

## Polynomials

1. Show that  $x - 4$  is a factor of  $2x^2 - 11x + 12$  and hence factorise fully.
2. Factorise fully  $x^3 - 11x^2 + 26x - 16$
3. If  $x + 3$  is a factor of  $x^3 + kx^2 + 7x + 3$ , find  $k$  and hence factorise fully.
4. Show that  $x = 2$  is a root of the equation  $x^3 + 5x^2 - 4x - 20 = 0$  and find the other roots.
5. Find the points where the curve  $y = x^3 + 10x^2 - 9x - 90$  cuts the coordinate axes.
6. Factorise fully  $x^3 + 2x^2 - x - 2$
7. If  $x - 1$  is a factor of  $x^3 - 3x^2 + kx - 1$ , find  $k$  and hence factorise fully.

8. Show that  $x = 1$  is a root of the equation  $x^3 - 9x^2 + 20x - 12 = 0$  and find the other roots.

9. Show that  $x = -4$  is a root of the equation  $6x^3 + 25x^2 + 2x - 8 = 0$  and find the other roots.

10. If  $x - 2$  is a factor of  $f(x) = 2x^3 + kx^2 + 7x + 6$ , find  $k$  and hence solve the equation  $f(x) = 0$ .

11. The same remainder is obtained when  $x^2 + 3x - 2$  and  $x^3 - 4x^2 + 5x + p$  are divided by  $x + 1$ . Find  $p$ .

### Answers

1.  $(x - 4)(2x - 3)$
2.  $(x - 1)(x - 2)(x - 8)$
3.  $k = 5$      $(x + 3)(x + 1)^2$
4.  $x = -2$  or  $x = 2$  or  $x = -5$
5.  $(-10, 0)$   $(-3, 0)$   $(3, 0)$  and  $(0, 90)$
6.  $(x - 1)(x + 1)(x + 2)$

$$7. \ k = 3 \quad (x-1)^3$$

$$8. \ x = 1 \text{ or } x = 2 \text{ or } x = 6$$

$$9. \ x = -4 \text{ or } x = \frac{1}{2} \text{ or } x = -\frac{2}{3}$$

$$10. \ k = -9 \quad x = -\frac{1}{2} \text{ or } x = 2 \text{ or } x = 3$$

$$11. \ p = 6$$